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Introduction

 Icy bodies crossing the snowline due to radial drift

 Caused by gas drag

 Quantify efficiency of water transport

 Focus on H2O ice line (i.e. the snowline)
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Boulder size range

 Pebbles and Cobbles 

sublimate fast and drift 

slow (e.g. Schoonenberg, Ormel 2017, 

Drazkowska 2017)

 Boulders with r ≳ 1m drift 

fast and take longer to lose 

ice

 Planetesimals

(r ≳ 200m) drift slower than 

snowline

 They never cross it by gas 

induced drift
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Methods
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Cometary Nucleus 

Model

 Model from Marboeuf 2008,

Marboeuf et al., 2012

 1-D mode used

 Heat, gas and dust grain transport

 Sublimation/Condensation of volatiles

 Dust mantle formation / removal possible

Disk Model
Cometary 

Nucleus Model
R, ρ

Surface T
Gas + grains

Coma

silicates

H
2
O H

2
O

6/24



Radial Drift
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Results
(BURN ET AL. SUBMITTED TO A&A)
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Single Boulder
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Sublimation Model
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Size Dependence
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Size Dependence
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Size Dependence
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Size Dependence

 Assume a size
distribution

𝑛 𝑚 𝑑𝑚

= ቊ
𝐴𝑚𝛼 for 𝑚 ∈ [𝑐𝑙 , 𝑐𝑢]

0 else
𝑑𝑚

 𝑐𝑙 = 1 kg
𝑐𝑢 = 1 × 109 kg

 Integral over all 
included masses

 Mean in time 
evolution of the
disk
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Dust Mantle

15/24



Different Disks
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Applicability
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Collisions
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Collision Rate

 «Stokes» collision rate (Safronov 1969)

Γ𝑐𝑜𝑙 = 𝑛𝑉 𝑚𝑖 𝜋 𝑅𝑡 + 𝑅𝑖
2Δ𝑣 1 +

𝑣𝑒𝑠𝑐
2

Δ𝑣2

 𝑣𝑒𝑠𝑐
2 = 2𝐺

𝑚𝑡+𝑚𝑖

𝑅𝑡+𝑅𝑖

 Integrate over all masses of impactors 𝑚𝑖

 Dust and larger particles settle to the midplane

 Balanced by turbulence

 Scale height is suppressed ℎ𝑠 = ℎ𝑔
𝛼

𝛼+𝑠
(Youdin&Lithwick 2007,Fromang&Nelson 

2009, Birnstiel 2016)

 Stop settling at 1% of gas scale height

 Relative velocity Δ𝑣 depends on radial and azimuthal contributions  
𝜂𝑣𝑘

1+𝑠2

 Neglected contributions: Settling speed, Turbulence, Brownian Motion
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Collision Rates
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Erosion

 Erosion by collisions with smaller bodies:

 Total mass erosion rate for a drifting boulder with 𝑟 = 10 m
2 − 10 × 10−2 % yr−1

 Timescale of modelled process 100 – 1000 yr
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Conclusions
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Conclusion

 Boulders > ca. 10 m reach the same distance to the star (pileup)

 For self-similar size distribution (-1.83) of drifting bodies, the location
of 50% water fraction is shifted by 2%

 Water presence limit closer by 15% than the standard one

 Independent of time and disk initial conditions

 Stable dust mantle has a huge impact on the location

 50% closer to the star compared to standard ice line

 No sublimation from surface layer, need diffusion through surface layer
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Outlook

 Take into account pressure of gas disk in a self-consistent way

 Adding H2, He to nucleus model

 Eccentric or scattered case

 Effects for bigger planetesimals

 Additional heating process

 Heat due to gas drag most significant

 Possible to see signature of this process in the future?

 Combination with pebble sublimation needed

 CO, CO2 lines

 Could small boulders keep their size when sublimating (becoming
fluffy)?
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